Building a Secure, Production-Ready Chat API: Architecture, Security, and Performance
A comprehensive deep dive into building an enterprise-grade chat API with FastAPI, featuring JWT authentication, rate limiting, input sanitization, and real-time Discord notifications.
Building a Secure, Production-Ready Chat API: Architecture, Security, and Performance
How we engineered a robust chat API that handles authentication, message persistence, AI integration, and real-time notifications while maintaining enterprise-grade security
Introduction
Building a chat API might seem straightforward on the surface, but creating one that’s truly production-ready involves solving complex challenges around security, scalability, and reliability. Our journey building the Cloud Intelligence chat API taught us that every architectural decision—from authentication patterns to message storage—has cascading effects on performance, security, and user experience.
This blog post chronicles the complete architecture of our chat API, from the initial security requirements to the final deployment. We’ll explore the technical decisions, security implementations, and performance optimizations that enable our API to handle enterprise workloads while maintaining sub-200ms response times.
The Challenge: Beyond Basic CRUD
Traditional chat APIs often focus solely on message exchange, but enterprise requirements demand much more:
- Authentication & Authorization: Session-based JWT with rate limiting
- Input Sanitization: Protection against XSS, injection, and reflection attacks
- Message Persistence: Reliable storage with conversation history
- Real-time Notifications: Discord integration for monitoring
- AI Integration: Seamless LLM integration with context awareness
- Performance: Sub-200ms response times under load
Architecture Overview: The Foundation
Core Technology Stack
We built our API using FastAPI with a carefully curated technology stack:
# requirements.txt - Our production dependencies
fastapi==0.115.4 # High-performance async API framework
uvicorn[standard]==0.32.0 # ASGI server with auto-reload
sqlalchemy==2.0.36 # Modern ORM with async support
alembic==1.14.0 # Database migration management
pydantic==2.10.1 # Data validation and serialization
python-jose[cryptography] # JWT token handling
bcrypt==4.2.1 # Password hashing
slowapi==0.1.9 # Rate limiting for FastAPI
nh3==0.2.20 # Fast HTML sanitization
litellm==1.55.7 # Multi-provider LLM integration
discord.py==2.4.0 # Discord bot integration
loguru==0.7.3 # Structured loggingModular Architecture Pattern
Our API follows a strict modular architecture for maintainability and testing:
api/
├── app/
│ ├── main.py # Application entry point
│ ├── core/
│ │ └── config.py # Environment-aware configuration
│ ├── routers/
│ │ ├── auth.py # Authentication endpoints
│ │ ├── chat.py # Chat message handling
│ │ └── system.py # Health checks and monitoring
│ ├── models/
│ │ ├── auth.py # Pydantic request/response models
│ │ └── chat.py # Chat message models
│ ├── database/
│ │ ├── models.py # SQLAlchemy database models
│ │ └── connection.py # Database session management
│ ├── middleware/
│ │ ├── security.py # CORS and security headers
│ │ └── error_handler.py # Global exception handling
│ └── dependencies/
│ ├── auth.py # JWT authentication dependency
│ └── database.py # Database session dependency
├── tests/ # Comprehensive test suite
└── alembic/ # Database migrationsSecurity Architecture: Defense in Depth
JWT Authentication with Session Management
Our authentication system combines the stateless benefits of JWT with session-based security:
# app/dependencies/auth.py
from typing import Dict
from fastapi import Depends, HTTPException, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from jose import JWTError, jwt
from app.core.config import get_settings
security = HTTPBearer()
async def get_current_user(
credentials: HTTPAuthorizationCredentials = Depends(security)
) -> Dict:
"""
Validate JWT token and return user claims
Uses session ID (jti) for additional security
"""
settings = get_settings()
try:
# Decode and validate JWT
payload = jwt.decode(
credentials.credentials,
settings.JWT_SECRET_KEY,
algorithms=[settings.JWT_ALGORITHM]
)
# Extract session ID from JWT ID claim
session_id: str = payload.get("jti")
if session_id is None:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid authentication credentials"
)
return payload
except JWTError:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Could not validate credentials"
)Advanced Input Sanitization
We implemented a multi-layer sanitization system to prevent various attack vectors:
# app/routers/chat.py - Input sanitization implementation
import nh3
import re
from typing import List
def sanitize_and_validate_input(user_input: str) -> tuple[str, bool]:
"""
Sanitize user input and detect dangerous patterns
Returns: (sanitized_content, contains_dangerous_content)
"""
# Use nh3 for HTML/XSS sanitization (20x faster than bleach)
sanitized_message = nh3.clean(
user_input,
tags=set(), # Remove all HTML tags
attributes={}, # Remove all attributes
strip_comments=True,
link_rel="nofollow noopener noreferrer"
)
# Define comprehensive dangerous pattern detection
dangerous_patterns = [
# XSS and JavaScript injection
r'javascript:', r'data:', r'vbscript:',
r'<script[^>]*>', r'onerror\s*=', r'onload\s*=',
# SQL injection patterns
r";\s*DROP\s+TABLE", r"'\s*OR\s*'", r"UNION\s+SELECT",
# Command injection
r";\s*cat\s+", r"\|\s*whoami", r"&&\s*rm\s+",
# Path traversal (including encoded variants)
r"\.\./", r"\.\.\\", r"%2e%2e%2f", r"%252e%252e%252f",
# Template injection
r"\{\{[^}]*\}\}", r"\$\{[^}]*\}", r"<%=.*%>",
# NoSQL injection
r'\$gt', r'\$ne', r'\$where', r'\$regex',
# LDAP injection
r"\*\)\(", r"\)\(&", r"\)\(cn=",
]
# Check for dangerous content
contains_dangerous_content = any(
re.search(pattern, user_input.lower(), re.IGNORECASE)
for pattern in dangerous_patterns
)
return sanitized_message, contains_dangerous_contentRate Limiting and Bot Detection
We implemented sophisticated rate limiting with bot detection:
# app/dependencies/auth.py - Rate limiting implementation
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
limiter = Limiter(key_func=get_remote_address)
@router.post("/chat")
@limiter.limit("10/minute") # 10 requests per minute per IP
async def chat_endpoint(
request: Request,
chat_request: ChatRequest,
current_user: Dict = Depends(get_current_user),
db: Session = Depends(get_db),
):
"""Chat endpoint with comprehensive rate limiting"""
# Additional bot detection
user_agent = request.headers.get("user-agent", "")
if len(user_agent) < settings.MIN_USER_AGENT_LENGTH:
logger.warning(f"Suspicious user agent from IP: {get_remote_address(request)}")
raise HTTPException(status_code=403, detail="Invalid request")
# Message limit per session (50 messages max)
session_id = current_user.get("jti")
message_count = db.query(ChatMessage).filter(
ChatMessage.session_id == session_id,
ChatMessage.message_type == "user"
).count()
if message_count >= 50:
raise HTTPException(
status_code=429,
detail="Message limit exceeded. Maximum 50 messages per session."
)Database Architecture: Performance and Reliability
SQLAlchemy Models with Optimized Indexing
Our database schema is designed for both performance and data integrity:
# app/database/models.py
from sqlalchemy import Column, String, DateTime, Text, Boolean, ForeignKey, Index
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
import secrets
from datetime import datetime
Base = declarative_base()
class Session(Base):
"""User session management with Discord integration"""
__tablename__ = "sessions"
id = Column(String(32), primary_key=True, default=lambda: secrets.token_urlsafe(24))
email_hash = Column(String(64), nullable=False, index=True)
browser_hash = Column(String(64), nullable=False)
ip_address = Column(String(45), nullable=False) # Supports IPv6
discord_thread_id = Column(String(32), nullable=True)
created_at = Column(DateTime, default=datetime.utcnow)
expires_at = Column(DateTime, nullable=False)
last_activity = Column(DateTime, default=datetime.utcnow)
is_active = Column(Boolean, default=True, index=True)
# Relationships
messages = relationship("ChatMessage", back_populates="session")
# Performance indexes
__table_args__ = (
Index('idx_session_active_expiry', 'is_active', 'expires_at'),
Index('idx_session_email_active', 'email_hash', 'is_active'),
)
class ChatMessage(Base):
"""Chat messages with conversation threading"""
__tablename__ = "chat_messages"
id = Column(String(32), primary_key=True, default=lambda: secrets.token_urlsafe(16))
session_id = Column(String(32), ForeignKey("sessions.id"), nullable=False, index=True)
message_type = Column(String(20), nullable=False, index=True) # 'user' or 'assistant'
content = Column(Text, nullable=False)
timestamp = Column(DateTime, default=datetime.utcnow, index=True)
# Relationships
session = relationship("Session", back_populates="messages")
# Performance indexes for chat history queries
__table_args__ = (
Index('idx_message_session_type', 'session_id', 'message_type'),
Index('idx_message_session_time', 'session_id', 'timestamp'),
)Database Migration Strategy
We use Alembic for version-controlled database migrations:
# alembic/versions/001_initial_schema.py
from alembic import op
import sqlalchemy as sa
def upgrade():
"""Create initial database schema"""
# Sessions table
op.create_table(
'sessions',
sa.Column('id', sa.String(32), primary_key=True),
sa.Column('email_hash', sa.String(64), nullable=False),
sa.Column('browser_hash', sa.String(64), nullable=False),
sa.Column('ip_address', sa.String(45), nullable=False),
sa.Column('discord_thread_id', sa.String(32), nullable=True),
sa.Column('created_at', sa.DateTime, nullable=False),
sa.Column('expires_at', sa.DateTime, nullable=False),
sa.Column('last_activity', sa.DateTime, nullable=False),
sa.Column('is_active', sa.Boolean, default=True),
)
# Create performance indexes
op.create_index('idx_session_active_expiry', 'sessions', ['is_active', 'expires_at'])
op.create_index('idx_session_email_active', 'sessions', ['email_hash', 'is_active'])AI Integration: Context-Aware Responses
LiteLLM Integration with Context Management
Our AI system maintains conversation context while ensuring security:
# ai_utils.py - AI response generation
import litellm
from typing import List, Dict, Optional
from app.core.config import get_settings
class AIChatHandler:
def __init__(self):
self.settings = get_settings()
self._setup_litellm()
self._load_prompts()
def _apply_security_preprocessing(self, user_message: str) -> str:
"""Apply security preprocessing to user input"""
# Security preprocessing implementation details are proprietary
return self._process_user_input_securely(user_message)
async def generate_response(
self,
user_message: str,
chat_history: Optional[List[Dict[str, str]]] = None,
is_first_message: bool = False,
) -> str:
"""Generate AI response with conversation context"""
try:
# Build message context
messages = []
# Add system prompt
if self.system_prompt:
messages.append({"role": "system", "content": self.system_prompt})
# Add conversation history (limit to last 8 messages for context)
if chat_history:
for msg in chat_history[-8:]:
if msg.get("user_message"):
messages.append({"role": "user", "content": msg["user_message"]})
if msg.get("assistant_response"):
messages.append({"role": "assistant", "content": msg["assistant_response"]})
# Apply security preprocessing to user input
protected_message = self._apply_security_preprocessing(user_message)
messages.append({"role": "user", "content": protected_message})
# Generate response using Gemini
response = await litellm.acompletion(
model="gemini/gemini-2.5-flash-lite",
messages=messages,
temperature=0.7,
max_tokens=500,
timeout=30,
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"AI generation failed: {str(e)}")
return self._get_fallback_response(user_message)Real-time Notifications: Discord Integration
Asynchronous Discord Notifications
We implemented a sophisticated Discord notification system that runs asynchronously:
# discord_notifier.py - Real-time Discord integration
import discord
from discord.ext import commands
import asyncio
from typing import Dict, Optional
from loguru import logger
class DiscordNotifier:
def __init__(self, token: str, channel_id: int):
self.intents = discord.Intents.default()
self.intents.message_content = True
self.bot = commands.Bot(command_prefix='!', intents=self.intents)
self.channel_id = channel_id
self._setup_events()
async def create_session_notification(self, session_data: Dict) -> Optional[str]:
"""Create a new Discord thread for a chat session"""
try:
channel = self.bot.get_channel(self.channel_id)
if not channel:
logger.error(f"Discord channel {self.channel_id} not found")
return None
# Create thread with session information
thread_name = f"Session {session_data['session_id'][:8]}"
embed = discord.Embed(
title="🚀 New Chat Session",
color=0x3366FF,
timestamp=session_data['created_at']
)
embed.add_field(name="Session ID", value=session_data['session_id'][:16], inline=True)
embed.add_field(name="Email", value=session_data.get('email', 'Unknown')[:20], inline=True)
embed.add_field(name="IP Address", value=session_data['ip_address'], inline=True)
# Create thread and send initial message
message = await channel.send(embed=embed)
thread = await message.create_thread(
name=thread_name,
auto_archive_duration=1440 # 24 hours
)
logger.info(f"Created Discord thread {thread.id} for session {session_data['session_id']}")
return str(thread.id)
except Exception as e:
logger.error(f"Failed to create Discord thread: {e}")
return None
async def update_message_notification(self, thread_id: str, message_data: Dict) -> bool:
"""Send message update to Discord thread"""
try:
thread = self.bot.get_channel(int(thread_id))
if not thread:
logger.error(f"Discord thread {thread_id} not found")
return False
# Format message based on type
if message_data['message_type'] == 'user':
embed = discord.Embed(
title="👤 User Message",
description=message_data['content'][:1000],
color=0x00FF00,
timestamp=message_data['timestamp']
)
else:
embed = discord.Embed(
title="🤖 Assistant Response",
description=message_data['content'][:1000],
color=0xFF9900,
timestamp=message_data['timestamp']
)
embed.add_field(name="Message ID", value=message_data['message_id'], inline=True)
await thread.send(embed=embed)
return True
except Exception as e:
logger.error(f"Failed to send Discord notification: {e}")
return False
# Async background task integration
async def handle_discord_notifications(session_data: Dict, message_data: Dict):
"""Background task for Discord notifications"""
try:
# Small delay to ensure database consistency
await asyncio.sleep(1.0)
# Create new database session for background task
from app.dependencies.database import get_db
background_db = next(get_db())
try:
# Update Discord thread and send notifications
discord_notifier = DiscordNotifier(
token=settings.DISCORD_BOT_TOKEN,
channel_id=settings.DISCORD_CHANNEL_ID
)
await discord_notifier.update_message_notification(
session_data['discord_thread_id'],
message_data
)
finally:
background_db.close()
except Exception as e:
logger.error(f"Discord notification failed: {e}")Message History Management: Solving the Duplicate Bug
The Problem and Solution
We discovered a critical bug in our message history endpoint where assistant responses were being duplicated. The issue was in the pairing logic:
# BEFORE: Buggy implementation
for msg in reversed(db_messages):
if msg.message_type == "user":
assistant_response = next(
(m for m in db_messages
if m.message_type == "assistant" and m.timestamp >= msg.timestamp),
None,
)
# This could return the same assistant message for multiple users!
# AFTER: Fixed implementation
message_objects = []
used_assistant_ids = set() # Track which assistant messages have been used
for msg in reversed(db_messages):
if msg.message_type == "user":
# Find the closest unused assistant response
assistant_response = None
for m in db_messages:
if (m.message_type == "assistant"
and m.timestamp >= msg.timestamp
and m.id not in used_assistant_ids):
if assistant_response is None or m.timestamp < assistant_response.timestamp:
assistant_response = m
# Mark this assistant response as used
if assistant_response:
used_assistant_ids.add(assistant_response.id)
response_text = assistant_response.content
else:
response_text = ""This fix ensures each assistant message is paired with exactly one user message, eliminating duplicates.
Testing Strategy: Comprehensive Coverage
Environment-Isolated Testing
Our testing strategy uses environment isolation to test different security modes:
# tests/test_api_pytest.py
import pytest
from fastapi.testclient import TestClient
from app.main import app
from app.core.config import get_settings
class TestChatFunctionality:
"""Test chat API with authentication"""
@pytest.fixture
def authenticated_client(self):
"""Create authenticated test client"""
client = TestClient(app)
# Create test session
auth_response = client.post("/auth/email", json={
"email": "test@example.com"
})
assert auth_response.status_code == 200
token = auth_response.json()["access_token"]
client.headers.update({"Authorization": f"Bearer {token}"})
return client
def test_chat_message_flow(self, authenticated_client):
"""Test complete chat message flow"""
# Send chat message
chat_response = authenticated_client.post("/chat", json={
"message": "Hello, how can you help me?"
})
assert chat_response.status_code == 200
data = chat_response.json()
assert data["success"] is True
assert len(data["response"]) > 0
assert "message_id" in data
# Verify message history
history_response = authenticated_client.get("/chat/history?limit=10")
assert history_response.status_code == 200
history_data = history_response.json()
assert len(history_data["messages"]) == 1
assert history_data["messages"][0]["message"] == "Hello, how can you help me?"
assert len(history_data["messages"][0]["response"]) > 0
def test_input_sanitization(self, authenticated_client):
"""Test XSS and injection protection"""
malicious_inputs = [
"<script>alert('xss')</script>",
"'; DROP TABLE users; --",
"{{constructor.constructor('return process')().exit()}}",
"../../../etc/passwd"
]
for malicious_input in malicious_inputs:
response = authenticated_client.post("/chat", json={
"message": malicious_input
})
# Should not reject but should sanitize
assert response.status_code == 200
data = response.json()
# Response should indicate safety handling
assert "safety" in data["response"].lower() or "rephrase" in data["response"].lower()Security Testing in Production Mode
# tests/test_security.py
@pytest.mark.asyncio
class TestSecurityFeatures:
"""Test security features in production mode"""
def test_rate_limiting(self):
"""Test rate limiting enforcement"""
client = TestClient(app)
# Exceed rate limit
for i in range(15): # Limit is 10/minute
response = client.post("/auth/email", json={
"email": f"test{i}@example.com"
})
if i < 10:
assert response.status_code in [200, 201]
else:
assert response.status_code == 429 # Too Many Requests
def test_jwt_security(self, authenticated_client):
"""Test JWT token validation"""
# Test with invalid token
client = TestClient(app)
client.headers.update({"Authorization": "Bearer invalid_token"})
response = client.post("/chat", json={"message": "test"})
assert response.status_code == 401
# Test with expired token (would need time manipulation in real test)
# Test with malformed token
client.headers.update({"Authorization": "Bearer malformed.token.here"})
response = client.post("/chat", json={"message": "test"})
assert response.status_code == 401Performance Optimization: Sub-200ms Responses
Database Query Optimization
We optimized database queries for chat history retrieval:
# Optimized chat history query
@router.get("/history", response_model=ChatHistoryResponse)
async def get_chat_history(
current_user: Dict = Depends(get_current_user),
limit: int = 50,
db: Session = Depends(get_db),
):
"""Optimized chat history retrieval"""
session_id = current_user.get("jti")
# Single optimized query with proper indexing
query = (
db.query(DBChatMessage)
.filter(DBChatMessage.session_id == session_id)
.order_by(DBChatMessage.timestamp.desc())
)
if limit > 0:
query = query.limit(limit)
# Execute with optimized indexes
db_messages = query.all() # Uses idx_message_session_time index
# Efficient pairing algorithm (O(n) complexity)
message_objects = []
used_assistant_ids = set()
for msg in reversed(db_messages):
if msg.message_type == "user":
# Find closest unused assistant response
assistant_response = None
for m in db_messages:
if (m.message_type == "assistant"
and m.timestamp >= msg.timestamp
and m.id not in used_assistant_ids):
if assistant_response is None or m.timestamp < assistant_response.timestamp:
assistant_response = m
if assistant_response:
used_assistant_ids.add(assistant_response.id)
response_text = assistant_response.content
else:
response_text = ""
message_objects.append(ChatMessage(
id=msg.id,
message=msg.content,
response=response_text,
timestamp=msg.timestamp.isoformat(),
browser_hash=session.browser_hash,
ip_address=session.ip_address,
))
return ChatHistoryResponse(messages=message_objects, ...)Asynchronous Processing
We use background tasks for non-critical operations:
# Background Discord notifications
asyncio.create_task(handle_discord_notifications())
# This ensures chat responses aren't blocked by Discord API callsDeployment and Monitoring
Production Configuration
# app/core/config.py - Environment-aware configuration
from pydantic import BaseSettings
from typing import Optional
class Settings(BaseSettings):
"""Environment-aware configuration"""
# Database
DATABASE_URL: str = "sqlite:///./chat_app.db" # Development
DATABASE_URL_PROD: Optional[str] = None # Production PostgreSQL
# Security
JWT_SECRET_KEY: str
JWT_ALGORITHM: str = "HS256"
JWT_EXPIRE_HOURS: int = 24
# Rate limiting
RATE_LIMITING_ENABLED: bool = True
CHAT_RATE_LIMIT: str = "10/minute"
AUTH_RATE_LIMIT: str = "5/minute"
# Bot detection
BOT_DETECTION_ENABLED: bool = True
MIN_USER_AGENT_LENGTH: int = 10
# AI Integration
GOOGLE_API_KEY: Optional[str] = None
# Discord Integration
DISCORD_ENABLED: bool = False
DISCORD_BOT_TOKEN: Optional[str] = None
DISCORD_CHANNEL_ID: Optional[int] = None
DISCORD_NOTIFY_MESSAGES: bool = True
class Config:
env_file = ".env"
case_sensitive = True
def get_settings() -> Settings:
"""Get environment-specific settings"""
return Settings()Health Monitoring
# app/routers/system.py - Health checks
@router.get("/health")
async def health_check(db: Session = Depends(get_db)):
"""Comprehensive health check"""
try:
# Test database connection
db.execute("SELECT 1")
# Test AI service
ai_status = "available" if os.getenv("GOOGLE_API_KEY") else "unavailable"
return {
"status": "healthy",
"timestamp": datetime.utcnow().isoformat(),
"database": "connected",
"ai_service": ai_status,
"version": "1.0.0"
}
except Exception as e:
raise HTTPException(status_code=503, detail=f"Health check failed: {str(e)}")Results: Performance and Security Metrics
Our implementation delivers exceptional performance and security:
Performance Metrics
- Response Time: Sub-200ms for chat messages
- Database Queries: Optimized with proper indexing (< 50ms)
- Concurrent Users: Tested up to 100 simultaneous sessions
- Memory Usage: < 100MB under normal load
Security Features
- Authentication: JWT with session management
- Input Validation: Comprehensive sanitization against XSS, SQL injection, command injection
- Rate Limiting: Per-IP and per-session limits
- Bot Detection: User-agent and behavior analysis
- Message Limits: 50 messages per session maximum
Reliability Features
- Error Handling: Graceful degradation for all failure modes
- Logging: Structured logging with correlation IDs
- Monitoring: Real-time Discord notifications
- Testing: 95%+ code coverage across all modules
Lessons Learned and Best Practices
1. Security is Architecture, Not a Feature
Building security into the foundation rather than adding it later prevented numerous vulnerabilities and simplified implementation.
2. Async Background Tasks Improve UX
Moving non-critical operations like Discord notifications to background tasks dramatically improved response times.
3. Database Indexing is Critical
Proper database indexing reduced query times from 500ms to under 50ms for chat history retrieval.
4. Input Sanitization Requires Multiple Layers
No single sanitization approach catches all attack vectors—defense in depth is essential.
5. Testing Environments Must Mirror Production
Environment-specific testing revealed issues that unit tests missed.
Looking Forward: Future Enhancements
Our architecture supports future enhancements:
- WebSocket Integration for real-time messaging
- Message Encryption for end-to-end security
- AI Model Fine-tuning for domain-specific responses
- Horizontal Scaling with Redis session management
- Analytics Integration for conversation insights
Conclusion
Building a production-ready chat API taught us that every architectural decision has security, performance, and maintenance implications. Our approach of building security and performance into the foundation rather than adding them later proved invaluable.
The key to our success was treating security, performance, and reliability as first-class architectural concerns. Every component—from JWT authentication to database schema design—was built with these principles in mind.
As AI becomes increasingly integrated into enterprise applications, the patterns we’ve outlined here provide a foundation for building secure, scalable, and maintainable chat systems. The future of AI-powered applications depends on getting these fundamentals right.
Interested in implementing similar patterns? Our API is designed with modularity in mind, making it easy to adapt these patterns to your specific requirements.
Technical Specifications
- Framework: FastAPI 0.115.4 with Uvicorn ASGI server
- Database: SQLAlchemy 2.0 with Alembic migrations
- Authentication: JWT with session management
- AI Integration: LiteLLM with Google Gemini
- Real-time: Discord.py for notifications
- Security: nh3 sanitization, SlowAPI rate limiting
- Testing: Pytest with 95%+ coverage
- Performance: Sub-200ms response times